3.215 \(\int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=120 \[ -\frac {3 \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {1}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

(1/2+1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d/a^(1/2)+1/d/tan(d*x+c)^(1/2)/(a
+I*a*tan(d*x+c))^(1/2)-3*(a+I*a*tan(d*x+c))^(1/2)/a/d/tan(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3559, 3598, 12, 3544, 205} \[ -\frac {3 \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {1}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((1/2 + I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + 1/(d*Sqrt
[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (3*Sqrt[a + I*a*Tan[c + d*x]])/(a*d*Sqrt[Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3559

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx &=\frac {1}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {\left (\frac {3 a}{2}-i a \tan (c+d x)\right ) \sqrt {a+i a \tan (c+d x)}}{\tan ^{\frac {3}{2}}(c+d x)} \, dx}{a^2}\\ &=\frac {1}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {3 \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {2 \int \frac {i a^2 \sqrt {a+i a \tan (c+d x)}}{4 \sqrt {\tan (c+d x)}} \, dx}{a^3}\\ &=\frac {1}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {3 \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {i \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{2 a}\\ &=\frac {1}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {3 \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}+\frac {a \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}+\frac {1}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {3 \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.58, size = 160, normalized size = 1.33 \[ \frac {i \sqrt {\tan (c+d x)} \left (\sqrt {-1+e^{2 i (c+d x)}} \left (1-5 e^{2 i (c+d x)}\right )+e^{i (c+d x)} \left (-1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt {2} d \left (-1+e^{2 i (c+d x)}\right )^{3/2} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

(I*((1 - 5*E^((2*I)*(c + d*x)))*Sqrt[-1 + E^((2*I)*(c + d*x))] + E^(I*(c + d*x))*(-1 + E^((2*I)*(c + d*x)))*Ar
cTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Sqrt[Tan[c + d*x]])/(Sqrt[2]*d*(-1 + E^((2*I)*(c + d*x)
))^(3/2)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))])

________________________________________________________________________________________

fricas [B]  time = 0.62, size = 354, normalized size = 2.95 \[ \frac {\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-10 i \, e^{\left (4 i \, d x + 4 i \, c\right )} - 8 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2 i\right )} - {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} - a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {2 i}{a d^{2}}} \log \left (\frac {1}{4} i \, a d \sqrt {\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} - a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {2 i}{a d^{2}}} \log \left (-\frac {1}{4} i \, a d \sqrt {\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )}{4 \, {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} - a d e^{\left (i \, d x + i \, c\right )}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(-
10*I*e^(4*I*d*x + 4*I*c) - 8*I*e^(2*I*d*x + 2*I*c) + 2*I) - (a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x + I*c))*sq
rt(2*I/(a*d^2))*log(1/4*I*a*d*sqrt(2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)
)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) + (a*d*e^(3*I*d*x +
3*I*c) - a*d*e^(I*d*x + I*c))*sqrt(2*I/(a*d^2))*log(-1/4*I*a*d*sqrt(2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)
*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x +
2*I*c) + 1)))/(a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x + I*c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 0.23, size = 395, normalized size = 3.29 \[ -\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (2 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a -\sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a -20 i \tan \left (d x +c \right ) \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+\sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a +12 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )-8 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{4 d a \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(3/2),x)

[Out]

-1/4/d*(a*(1+I*tan(d*x+c)))^(1/2)*(2*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1
/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a-2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I
*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a-20*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1
/2)*(-I*a)^(1/2)*tan(d*x+c)+2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a
*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a+12*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-8
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/a/tan(d*x+c)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/
(-I*a)^(1/2)/(-tan(d*x+c)+I)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)

[Out]

int(1/(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(3/2),x)

[Out]

Integral(1/(sqrt(I*a*(tan(c + d*x) - I))*tan(c + d*x)**(3/2)), x)

________________________________________________________________________________________